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Summary 

 

The authors provide a pedagogical review of the subject of Quantum Chaos. The 

subject’s origins date to the debut of the twentieth century when it was realized by 

Einstein that Bohr’s Old Quantum Theory could not apply to chaotic systems. A century 

later, the issues arising in trying to understand the quantum mechanics of chaotic 

systems are actively under research. The main theoretical tools for exploring how chaos 

enters into quantum mechanics and other wave mechanics such as optics and acoustics, 

are semiclassical methods and random matrix theory. Both are briefly reviewed in their 

own chapters. The kicked rotor, an important simple paradigm of chaos, is used to 

illustrate some of the main issues in the field. The chapter proceeds with applications of 

quantum chaos research to understanding the results of three very different experimental 

systems.  

 

1. Introduction 

 

It is not trivial to compose a concise statement that defines the meaning of quantum 

chaos precisely. In fact, it may be more helpful to begin with a description. One branch 

of quantum chaos encompasses a statistical mechanics based on the nature of a system’s 

dynamics, be it chaotic, diffusive, integrable, or some mixture. This means that one is 

not relying on the thermodynamic limit in which the number of particles tends to 
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infinity. Another branch is an analysis of what the behaviors of linear wave equation 

solutions may be in a short wavelength or asymptotic limit. It applies equally well in the 

contexts of quantum mechanics, acoustics, optics, or other linear wave systems, and 

quantum chaos is sometimes referred to as wave chaos, which is really the more general 

moniker. As the subject has developed, these two branches have become intimately 

intertwined with each other and with parts of the theory of disordered systems. From 

investigations of quantum chaos, many unexpected and deep connections have emerged 

between quantum and classical mechanics, and wave and ray mechanics as well as 

newly identified asymptotic and statistical behaviors of wave systems. Hopefully, the 

meaning of these somewhat abstract statements will develop into a clearer mental image 

as you proceed through the general subject introduction provided here.  

 

The study of quantum chaos has multiple, important motivations. First, it is absolutely 

essential if one wishes to understand deeply the interface between the quantum and 

classical mechanical worlds. Together they form the foundation for all of physics and 

there is still much left to uncover about their connections and the Correspondence 

Principle. In addition, quantum chaos has pushed the development of new theoretical 

techniques and methods of analysis that apply to a wide variety of systems from simple 

single particle systems to strongly interacting many-body systems to branches of 

mathematics. These developments are still underway and are still being applied to new 

domains.  

 

A fascinating feature of quantum chaos is that it reveals a significant amount of 

universality in the behavior of extraordinarily different physical systems. For example, 

acoustic wave intensities found in problems with strong multiple scattering that lead to a 

probability density known as the Rayleigh distribution, Ericson fluctuations in the 

cross-sections of neutrons scattering from medium to heavy nuclei, and conductance 

fluctuations found in chaotic or disordered quantum dots can be seen to possess a 

common underlying statistical structure. One is thus able to see essential parallels 

between systems that would normally otherwise be left uncovered. Universality implies 

a lack of sensitivity to many aspects of a system in its statistical properties, i.e. an 

absence of certain kinds of information. Furthermore, quantum chaos brings together 

many disparate, seemingly unrelated concepts, i.e. classical chaos, semiclassical physics 

and asymptotic methods, random matrix ensembles, path integrals, quantum field 

theories, Anderson localization, and ties them together in unexpected ways. We cannot 

cover all of these topics here, and so make a selection of important foundations to cover 

instead. However, we will list a few references at the end to some of what has been left 

out for the interested reader.  

 

It is not surprising then to see that quantum chaos has found application in many 

domains. A partial list includes: i) low energy proton and neutron resonances in medium 

and heavy nuclei; ii) ballistic quantum dots; iii) mesoscopic disordered electronic 

conductors; iv) the Dirac spectrum in non-Abelian gauge field backgrounds; v) atomic 

and molecular spectra; vi) Rydberg atoms and molecules; vii) microwave-driven atoms; 

viii) ultra-cold atoms and optical lattices; ix) optical resonators; x) acoustics in crystals 

and over long ranges of propagation in the ocean; xi) quantum computation and 

information studies; xii) the Riemann zeta function and generalized L-functions; and 

xiii) decoherence and fidelity studies. There are many other examples.  
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The structure of this contribution is the following. The next section covers critical 

background and historical developments. This is followed by the introduction of a 

historically important, simple dynamical system, the kicked rotor, which illustrates the 

notion of the quantum-classical correspondence, and provides in this way some intuition 

of why, and in what way, one should expect classically chaotic dynamics to influence 

the quantum mechanical properties of a system. Section 4 goes into the more formal 

aspects of the quantum-classical correspondence, and in particular gives a more 

concrete sense to different approximation schemes going under the name of 

semiclassical approximations. It covers a brief review of the Bohr (or more generally 

Einstein-Brillouin-Keller) quantization scheme, and discusses why this approach can be 

applied only to integrable systems. This is followed by a description of semiclassical 

trace formulae, applicable for a much wider range of dynamics, and in particular of the 

Gutzwiller trace formula valid in the chaotic regime. Section 5 introduces random 

matrix theory, which has proven extremely fruitful in the context of the quantum 

dynamics of classically chaotic systems, namely the statistical description of the 

spectrum and eigenfunctions. Finally, in Section 6 we select a few systems, or 

problems, for which the concepts of quantum chaos have proven useful. We will in 

particular show how the tools described in Sections 4 and 5 can be applied in different 

physical contexts by considering the examples of the Hydrogen atom in a strong 

magnetic field, the Coulomb Blockade in ballistic quantum dots, as well as some 

aspects of orbital magnetism.  

 

2. Background Context and History 

 

2.1. Chaos 

 

At the end of the nineteenth century, the paradigm most physicists (as well as most 

everyone actually) were relying on to understand the physical world was derived from 

the motion of planets. Within this paradigm, physical objects could be described by 

their position and velocity, quantities which could be known arbitrarily well or at least 

as precisely as one was able to measure them. Their time evolution was governed by 

Newton’s laws, which form a completely deterministic set of equations, and the subject 

is known as classical mechanics. However, exact solutions of these equations were 

derived only in certain simple cases, and it was usually assumed that sophisticated 

approximation schemes could provide arbitrarily accurate solutions – as long as one was 

willing to put enough effort into the calculations.  

 

A limitation to this notion that, at least in principle, it is possible to have complete 

predictive power with respect to the dynamics of physical objects, arose with the 

realization that the solutions to Newton’s equations could be exponentially unstable. 

Already, Poincaré, in his study of the “three-body problem” of celestial dynamics knew 

that under many circumstances, a qualitatively different and significantly more complex 

kind of dynamics was taking place now known as chaos. It is worth understanding how 

it differs from the dynamics of more readily solvable systems.  

 

Let us begin by considering a stable, effectively one body, dynamical system, the Earth 

revolving around the Sun at position r  and with a momentum p  relative to the Sun. 

Assuming the Sun’s mass is immensely greater than the Earth’s, the Earth’s motion is 
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governed by the classical Hamiltonian (the total energy of the system - kinetic plus 

potential) 
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associated with the gravitational potential energy  
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where  ,M M
 are the Earth’s and Sun’s masses, respectively, and G  is the 

gravitational constant. The derivative changes in position and momentum r  and p  are 

given by Hamilton’s equations  
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which can be shown to be equivalent to the Newton equations of motion 

M V   r r . Depending on the initial conditions,     0 , 0r p , Eq. (3) is solved 

with Eqs. (1, 2) to give the known (Keplerian) elliptical orbits that are excellent 

approximations to Earth’s true motion.  

 

It turns out that both the kinetic energy term 
2 2Mp  and the gravitational potential 

 V r  are invariant under a rotation of the physical space. This implies that one can 

construct two independent constants of the motion associated with angular momentum. 

Adding another to this list, Earth’s total energy, which is conserved because the 

Hamiltonian, Eqs. (1, 2), has no explicit time dependence, there are three constants of 

the motion. Any system, such as this, which has as many constants of motion as degrees 

of freedom is said to be integrable. Integrability implies that the motion of the system is 

stable in the sense that a small change in the initial position or velocity implies a small 

change, with a linear time-dependence of the final position and velocity. In the same 

way, a small perturbation of an integrable Hamiltonian, as could be realized by 

accounting for Jupiter’s gravitational pull on the Earth, would not drastically alter the 

trajectories or stabilities.  

 

Before modern computers made it possible to perform extensive numerical simulations, 

the class of problems physicists or mathematicians could effectively solve were either 

integrable or sufficiently near integrability that a perturbative scheme could be applied. 

This class included both the “two-body problem”, i.e. two bodies interacting via a 

central force such as the Earth example, and small perturbations around stable 

equilibrium points. The theory was very successful for this broad range of physical 
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situations, and at times it was erroneously assumed that to broaden the range of treatable 

problems, one had merely to work harder doing longer calculations or calculate more 

terms in a perturbations series.  

 

However, integrability and/or near-integrability is a rather exceptional property for a 

dynamical system to possess. Systems with three or more bodies interacting often 

behave radically different from integrable systems. The motion of Earth’s Moon and 

Pluto are both chaotic as each are effectively part of a three body system (Sun, Earth, 

Moon or Sun, Neptune, Pluto). Even deceptively simple looking systems may display 

chaos. Consider Bunimovich’s stadium billiard, mathematically proven completely 

chaotic, shown in Figure 1, and consider a point-like particle of mass m  moving freely 

(that is in a straight line) inside the billiard and subject to specular reflection on the 

boundaries. Contrary to the Earth’s orbit around the Sun, a particle’s motion within this 

billiard is highly unstable. As illustrated in Figure 1, two trajectories initiated with 

slightly different initial conditions diverge exponentially quickly from each other, and 

after just a few bounces are not correlated anymore. In the same way, even the slightest 

perturbation would completely change a trajectory after a relatively small number of 

bounces. The motion within the stadium billiard is associated with the strongest form of 

chaotic dynamics. It is perfectly deterministic, so that exact knowledge of position and 

velocity at some initial time fixes the evolution to all times, and yet the evolution is so 

unstable that any uncertainty in the initial conditions quickly makes both position and 

velocity unpredictable.  

 

 
 

Figure 1. An example of a strongly chaotic system: the Bunimovich stadium billiard. 

The two trajectories indicated by the solid and dashed lines begin with a slightly 

different starting point. Their divergence is an illustration of exponential sensitivity to 

initial conditions. 

 

After the pioneering work of Poincaré, little progress was made in the study of chaotic 

systems and, more generally, of systems far from integrability until the 1960’s or 

1970’s. Then computer simulations made it possible to develop one’s intuition about 

their behaviors and to motivate more formal work concerning their qualitative and 

statistical properties. Note that integrable and chaotic systems correspond to the two 

limiting cases of the most stable and most unstable dynamics. Typical low dimensional 

systems usually fall in the intermediate category of mixed dynamics in which integrable-

like and chaotic-like motions coexist in different regions of phase space.  

 

2.2. Quantum Mechanics 

 

A second, quite fundamental limitation to the notion that one could have complete 
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predictive power over physical objects, arose with the realization that microscopic 

systems, such as atoms and molecules require a description in terms of quantum 

mechanics. Classically and non-relativistically, the Hydrogen atom, other than the 

values of its constants and microscopic size, leads to equations identical to that of the 

Sun and Earth system; i.e.  

 

 
2

cl

e2
H V

m
 

p
r          (4) 

 

with  

 

 
2

04

e
V


 r

r
         (5) 

 

where em  is the mass of the electron, e  the electric charge, and 0  the permittivity 

constant. The electron then in a classical world would follow elliptical orbits around the 

proton in a Hydrogen atom just like the Earth moves around the Sun.  

 

Quantum mechanics implies however drastic conceptual changes. Rather than being 

entirely characterized by it’s position and velocity, the electron is now described by a 

wave-function  ,t r , whose modulus square  
2

, t r  specifies the probability that 

the particle can be found at position r  at time t . As a consequence position, as well as 

velocity, can be known only in a probabilistic way, not with an arbitrary precision, and 

not simultaneously. The time evolution of the wavefunction is then given by the [time-

dependent] Schrödinger equation  
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where the quantum version of the Hamiltonian  
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is obtained from the classical counterpart clH  Eq. (4) through the substitution 

i 
r

p .  

 

From the Schrödinger equation, Eq. (6), we see that in quantum mechanics a particular 

role will be played by the static solutions, called eigenenergies and eigenfunctions, of 

the quantum Hamiltonian quĤ , i.e. the set of real numbers n  and functions 

  0,1,2,n n r  fulfilling the eigenvalue equation (or stationary Schrödinger 

equation)  
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qu
ˆ

n n nH   .          (8) 

 

Indeed, from Eq. (6) the time evolution of the n ’th eigenfunction is 

     0 expn n nt i t   . Therefore to within the phase  exp ni t , which is not a 

measurable quantity, n  is a stationary function. In a more rigorous theory of the 

Hydrogen atom, in which the interaction with the electromagnetic environment is 

included, the energies   of the photons emitted or absorbed by the atom are generally 

given by the difference  n n  between two eigenenergies. This indicates that the 

Hydrogen atom has switched from the state n  to the state n  . As the most natural way 

to probe the properties of an atom or a molecule is to look at the color of the light they 

emit or absorb, i.e. at the energy of the corresponding photons, the spectrum of an atom 

or molecule (that is the set of all energies of the corresponding quantum Hamiltonian) is 

the most immediate quantity to access. In addition, many important properties of 

quantum systems, and in particular thermodynamic quantities, are entirely determined 

by their energy spectra. More focus ahead is on the description of the quantum energy 

spectra, keeping in mind however that this does not exhaust the richness of the quantum 

world.  

 

2.3. Correspondence Principle & Quantum Chaos 

 

In the early twentieth century quantum mechanics began with a primitive form known 

as the “Old Quantum Theory.” It was the statement that among all possible trajectories, 

only one with the classical action 
def

J d  p r  being a multiple of Planck’s constant 2  

could actually correspond to a stationary state of the quantum particle. The action, and 

thus the energy of the electron had to be “quantized”. 

 

In the modern form of quantum mechanics the link between the quantum and the 

classical world is less immediate, but still exists through what is referred to as the 

Correspondence Principle. For instance, the quantum Hamiltonian Eq. (7) describing the 

Hydrogen atom could be associated with a classical counterpart, here given by Eqs. (1)-

(5). This remains true on a very general basis. Quantum Hamiltonians can be associated 

with a classical analog, which, in some sense corresponds to its classical limit as 0  

(or more correctly when all action variables are large compared with ). 

 

Even before the emergence of the full quantum theory, it was recognized that the 

primitive form can only apply to integrable systems. With the modern form of quantum 

mechanics, the Correspondence Principle is effective irrespectively of the nature of the 

dynamics. A question that naturally arises then is whether this concept of chaos, which 

has been developed in the context of classical physics, is relevant when studying a 

quantum system.  

 

This interrogation could actually be approached in two rather different ways. The first 

one would be to decide whether, for instance, by making a choice different than Eq. (5) 

of the potential  V r , there exists a class of quantum Hamiltonians such that the 

Schrödinger equation (6) is chaotic. One possible sense of the term “chaos" here could 
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be that two slightly different initial wave functions  1 , 0t r  and  2 , 0t r  diverge 

“exponentially” rapidly from one another with time. It turns out however that one can 

answer this question under relatively general conditions, and the answer is negative. 

Indeed, the simple fact that the Schrödinger equation is linear (i.e. that a linear 

combination of two solutions of Eq. (6) is also a solution of this equation) makes it 

impossible that chaos, in any sense similar to classical mechanics, develops in quantum 

mechanics. 

 

Another more interesting and productive approach to the role of chaos in quantum 

mechanics is associated with exploring the interrelations mentioned above between a 

quantum system and its classical analog through the Correspondence Principle. Indeed, 

within this framework it becomes meaningful to ask whether the quantum mechanics of 

some system is qualitatively different if its classical analog displays a completely 

chaotic and irregular behavior. The answer to this question is positive, and one purpose 

of quantum chaos is to determine in what ways. We shall illustrate this statement in the 

next section using the particular example of the kicked rotor, and come back after that to 

a discussion of the role of chaos in quantum mechanics with a broader perspective.  

- 

- 

- 
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